您当前的位置:首页 >> 拉丁舞
葡萄糖代谢紊乱中的微量元素
发布时间:2019-11-04
 

许多微量元素中,其金属对于无数生化反应的正常运作是必不可少的,更特别的是作为酶辅因子。

对于葡萄糖稳态调节中涉及的大量过程尤其如此,其在葡萄糖代谢本身或激素控制中尤其是胰岛素中尤其如此。


文献研究表明,这些元素的某些关键作用的理论假设,导致了对胰岛素拮抗和糖尿病治疗的真正希望。


基于现有数据的有限经验表明,考虑到安全剂量和非安全剂量之间的区别,对其中大多数的有益效果和使用剂量采取谨慎态度。

 

目前这些病理学治疗获益明显,但一些数据表明,这些金属可能对患者个体金属水平存在缺陷具有临床意义。

 

一些微量元素如铬或锌与口服抗糖尿病药的联合也是如此。然而,这个领域基本上没有在适当的临床试验中探索,因此,值得一试。

 

许多微量元素,其中金属作为辅助因子参与无数生物化学,特别是酶促反应。因此,它们在许多生理过程中发挥主要作用,特别是免疫和新陈代谢。

 

一个很好的例子来说明它们的重要贡献是镁:低镁水平已与增加的2型糖尿病相关,而存在争议有关的是低镁血症在糖尿病前期状态的重要性。

 

微量元素已被确定为潜在的候选药物,用于改善前驱糖尿病(胰岛素拮抗,肥胖,代谢综合征)或糖尿病等代谢性疾病。


对导致或加重这些代谢紊乱的细胞和生物化学机制,可以通过鉴定微量元素的细胞靶点和作用位点,重新激活他们的治疗潜力。


鉴于这些过程在葡萄糖稳态和胰岛素敏感性中的关键重要性,胰岛素受体信号传导(铬),抗氧化性质(硒,锌)或磷酸酶(钒)的抑制的活化,因此,看起来很有希望。

 

事实上胰岛素受体和受体后信号传导缺陷被认为是血糖失调和胰岛素拮抗的基础。

糖尿病前期状态原因是氧化应激,表现特征是炎症,由多个抗氧化系统产生自由基和清除自由基之间平衡的破坏。此外,这些机制可能参与了胰岛素拮抗的发病机制和伴随的病理表现。


参考文献

Chaudhary DP, Sharma R, Bansal DD: Implications of magnesium deficiency in type 2 diabetes: a review. Biol Trace Elem Res. 2010, 134: 119-129. 10.1007/s12011-009-8465-z.

Wells IC: Evidence that the etiology of the syndrome containing type 2 diabetes mellitus results from abnormal magnesium metabolism. Can J Physiol Pharmacol. 2008, 86: 16-24. 10.1139/Y07-122.

Evangelopoulos AA, Vallianou NG, Panagiotakos DB, Georgiou A, Zacharias GA, Alevra AN, et al: An inverse relationship between cumulating components of the metabolic syndrome and serum magnesium levels. Nutr Res. 2008, 28: 659-663. 10.1016/j.nutres.2008.07.001.

Abdul-Ghani MA, DeFronzo RA: Pathogenesis of insulin resistance in skeletal muscle. J Biomed Biotechnol. 2010, 476279

Henriksen EJ: Dysregulation of Glycogen Synthase Kinase-3 in Skeletal Muscle and the Etiology of Insulin Resistance and Type 2 Diabetes. Curr Diabetes Rev. 2010, 6: 285-293. 10.2174/157339910793360888.

Friederich M, Hansell P, Palm F: Diabetes, oxidative stress, nitric oxide and mitochondria function. Curr Diabetes Rev. 2009, 5: 120-144. 10.2174/157339909788166800.

Kaneto H, Katakami N, Matsuhisa M, Matsuoka TA: Role of reactive oxygen species in the progression of type 2 diabetes and atherosclerosis. Mediators Inflamm. 2010, 453892

Zeyda M, Stulnig TM: Obesity, inflammation, and insulin resistance--a mini-review. Gerontology. 2009, 55: 379-386. 10.1159/000212758.

Cheng Z, Tseng Y, White MF: Insulin signaling meets mitochondria in metabolism. Trends Endocrinol Metab. 2010, 21: 589-598. 10.1016/j.tem.2010.06.005.

Goldhaber SB: Trace element risk assessment: essentiality vs toxicity. Regul Toxicol Pharmacol. 2003, 38: 232-242. 10.1016/S0273-2300(02)00020-X.

Wallach S: Clinical and biochemical aspects of chromium deficiency. J Am Coll Nutr. 1985, 4: 107-120.

Calton JB: Prevalence of micronutrient deficiency in popular diet plans. J Int Soc Sports Nutr. 2010, 7: 24-10.1186/1550-2783-7-24.

Mahdi GS: Barley as high-chromium food. J Am Diet Assoc. 1995, 95: 749-10.1016/S0002-8223(95)00206-5.

Levina A, Lay PA: Chemical properties and toxicity of chromium[III] nutritional supplements. Chem Res Toxicol. 2008, 21: 563-571. 10.1021/tx700385t.

Vincent JB: Chromium: celebrating 50 years as an essential element?. Dalton Trans. 2010, 39: 3787-3794. 10.1039/b920480f.

Stallings DM, Hepburn DD, Hannah M, Vincent JB, O'Donnell J: Nutritional supplement chromium picolinate generates chromosomal aberrations and impedes progeny development in Drosophila melanogaster. Mutat Res. 2006, 610: 101-113.

Zhao P, Wang J, Ma H, Xiao Y, He L, Tong C, et al: A newly synthetic chromium complex-chromium [D-phenylalanine]3 activates AMP-activated protein kinase and stimulates glucose transport. Biochem Pharmacol. 2009, 77: 1002-1010. 10.1016/j.bcp.2008.11.018.

Sreejayan N, Marone PA, Lau FC, Yasmin T, Bagchi M, Bagchi D: Safety and toxicological evaluation of a novel chromium[III] dinicocysteinate complex. Toxicol Mech Methods. 2010, 20: 321-333. 10.3109/15376516.2010.487880.

Fuhr JP, He H, Goldfarb N, Nash DB: Use of chromium picolinate and biotin in the management of type 2 diabetes: an economic analysis. Dis Manag. 2005, 8: 265-275. 10.1089/dis.2005.8.265.

Wang YQ, Yao MH: Effects of chromium picolinate on glucose uptake in insulin-resistant 3T3-L1 adipocytes involve activation of p38 MAPK. J Nutr Biochem. 2009, 20: 982-991. 10.1016/j.jnutbio.2008.09.002.

Wang H, Kruszewski A, Brautigan DL: Cellular chromium enhances activation of insulin receptor kinase. Biochemistry. 2005, 44: 8167-8175. 10.1021/bi0473152.

Qiao W, Peng Z, Wang Z, Wei J, Zhou A: Chromium improves glucose uptake and metabolism through upregulating the mRNA levels of IR, GLUT4, GS, and UCP3 in skeletal muscle cells. Biol Trace Elem Res. 2009, 131: 133-142. 10.1007/s12011-009-8357-2.

Peng Z, Qiao W, Wang Z, Dai Q, He J, Guo C, et al: Chromium Improves Protein Deposition Through Regulating the mRNA Levels of IGF-1, IGF-1R, and Ub in Rat Skeletal Muscle Cells. Biol Trace Elem Res. 2010, 137: 226-234. 10.1007/s12011-009-8579-3.

Horvath EM, Tackett L, McCarthy AM, Raman P, Brozinick JT, Elmendorf JS: Antidiabetogenic effects of chromium mitigate hyperinsulinemia-induced cellular insulin resistance via correction of plasma membrane cholesterol imbalance. Mol Endocrinol. 2008, 22: 937-950. 10.1210/me.2007-0410.

Pattar GR, Tackett L, Liu P, Elmendorf JS: Chromium picolinate positively influences the glucose transporter system via affecting cholesterol homeostasis in adipocytes cultured under hyperglycemic diabetic conditions. Mutat Res. 2006, 610: 93-100.

Jain SK, Kannan K: Chromium chloride inhibits oxidative stress and TNF-alpha secretion caused by exposure to high glucose in cultured U937 monocytes. Biochem Biophys Res Commun. 2001, 289: 687-691. 10.1006/bbrc.2001.6026.

Jain SK, Rains JL, Croad JL: Effect of chromium niacinate and chromium picolinate supplementation on lipid peroxidation, TNF-alpha, IL-6, CRP, glycated hemoglobin, triglycerides, and cholesterol levels in blood of streptozotocin-treated diabetic rats. Free Radic Biol Med. 2007, 43: 1124-1131. 10.1016/j.freeradbiomed.2007.05.019.

Wang YQ, Dong Y, Yao MH: Chromium picolinate inhibits resistin secretion in insulin-resistant 3T3-L1 adipocytes via activation of amp-activated protein kinase. Clin Exp Pharmacol Physiol. 2009, 36: 843-849. 10.1111/j.1440-1681.2009.05164.x.

Jain SK, Croad JL, Velusamy T, Rains JL, Bull R: Chromium dinicocysteinate supplementation can lower blood glucose, CRP, MCP-1, ICAM-1, creatinine, apparently mediated by elevated blood vitamin C and adiponectin and inhibition of NFkappaB, Akt, and Glut-2 in livers of zucker diabetic fatty rats. Mol Nutr Food Res. 2010, 54: 1371-1380. 10.1002/mnfr.200900177.

Sreekanth R, Pattabhi V, Rajan SS: Molecular basis of chromium insulin interactions. Biochem Biophys Res Commun. 2008, 369: 725-729. 10.1016/j.bbrc.2008.02.083.

Kazi TG, Afridi HI, Kazi N, Jamali MK, Arain MB, Jalbani N, et al: Copper, chromium, manganese, iron, nickel, and zinc levels in biological samples of diabetes mellitus patients. Biol Trace Elem Res. 2008, 122: 1-18. 10.1007/s12011-007-8062-y.

Kraszeski JL, Wallach S, Verch RL: Effect of insulin on radiochromium distribution in diabetic rats. Endocrinology. 1979, 104: 881-885. 10.1210/endo-104-4-881.

Morris BW, MacNeil S, Hardisty CA, Heller S, Burgin C, Gray TA: Chromium homeostasis in patients with type II [NIDDM] diabetes. J Trace Elem Med Biol. 1999, 13: 57-61.

Davis CM, Vincent JB: Chromium oligopeptide activates insulin receptor tyrosine kinase activity. Biochemistry. 1997, 36: 4382-4385. 10.1021/bi963154t.

Yamamoto A, Wada O, Ono T: Isolation of a biologically active low-molecular-mass chromium compound from rabbit liver. Eur J Biochem. 1987, 65: 627-631. 10.1111/j.1432-1033.1987.tb11486.x.

Mertz W: Chromium in human nutrition: a review. J Nutr. 1993, 123: 626-633.

Shindea UA, Sharma G, Xu YJ, Dhalla NS, Goyal RK: Insulin sensitising action of chromium picolinate in various experimental models of diabetes mellitus. J Trace Elem Med Biol. 2004, 18: 23-32. 10.1016/j.jtemb.2004.03.002.

Rabinowitz MB, Gonick HC, Levin SR, Davidson MB: Effects of chromium and yeast supplements on carbohydrate and lipid metabolism in diabetic men. Diabetes Care. 1983, 6: 319-327. 10.2337/diacare.6.4.319.

Dogukan A, Tuzcu M, Juturu V, Cikim G, Ozercan I, Komorowski J, et al: Effects of chromium histidinate on renal function, oxidative stress, and heat-shock proteins in fat-fed and streptozotocin-treated rats. J Ren Nutr. 2010, 20: 112-120. 10.1053/j.jrn.2009.04.009.

Jain SK, Patel P, Rogier K, Jain SK: Trivalent chromium inhibits protein glycosylation and lipid peroxidation in high glucose-treated erythrocytes. Antioxid Redox Signal. 2006, 8: 238-241. 10.1089/ars.2006.8.238.

Refaie FM, Esmat AY, Mohamed AF, Aboul Nour WH: Effect of chromium supplementation on the diabetes induced-oxidative stress in liver and brain of adult rats. Biometals. 2009,

Yang X, Li SY, Dong F, Ren J, Sreejayan N: Insulin-sensitizing and cholesterol-lowering effects of chromium [D-Phenylalanine]3. J Inorg Biochem. 2006, 100: 1187-1193. 10.1016/j.jinorgbio.2006.01.039.

Striffler JS, Polansky MM, Anderson RA: Dietary chromium decreases insulin resistance in rats fed a high-fat, mineral-imbalanced diet. Metabolism. 1998, 47: 396-400. 10.1016/S0026-0495(98)90049-X.

Dong F, Yang X, Sreejayan N, Ren J: Chromium [D-phenylalanine]3 improves obesity-induced cardiac contractile defect in ob/ob mice. Obesity. 2007, 15: 2699-2711. 10.1038/oby.2007.322.

Kim DS, Kim TW, Kang JS: Chromium picolinate supplementation improves insulin sensitivity in Goto-Kakizaki diabetic rats. J Trace Elem Med Biol. 2004, 17: 243-247. 10.1016/S0946-672X(04)80025-7.

Kim DS, Kim TW, Park IK, Kang JS, Om AS: Effects of chromium picolinate supplementation on insulin sensitivity, serum lipids, and body weight in dexamethasone-treated rats. Metabolism. 2002, 51: 589-594. 10.1053/meta.2002.31985.

Cefalu WT, Wang ZQ, Zhang XH, Baldor LC, Russell JC: Oral chromium picolinate improves carbohydrate and lipid metabolism and enhances skeletal muscle Glut-4 translocation in obese, hyperinsulinemic [JCR-LA corpulent] rats. J Nutr. 2002, 132: 1107-1114.

Yang X, Li SY, Dong F, Ren J, Sreejayan N: Insulin-sensitizing and cholesterol-lowering effects of chromium [D-Phenylalanine]3. J Inorg Biochem. 2006, 100: 1187-1193. 10.1016/j.jinorgbio.2006.01.039.

Mozaffari MS, Abdelsayed R, Liu JY, Wimborne H, El-Remessy A, El-Marakby A: Effects of chromium picolinate on glycemic control and kidney of the obese Zucker rat. Nutr Metab. 2009, 6: 51-10.1186/1743-7075-6-51.

Kuryl T, Krejpcio Z, Wojciak RW, Lipko M, Debski B, Staniek H: Chromium[III] propionate and dietary fructans supplementation stimulate erythrocyte glucose uptake and beta-oxidation in lymphocytes of rats. Biol Trace Elem Res. 2006, 114: 237-248. 10.1385/BTER:114:1:237.

Martin J, Wang ZQ, Zhang XH, Wachtel D, Volaufova J, Matthews DE, et al: Chromium picolinate supplementation attenuates body weight gain and increases insulin sensitivity in subjects with type 2 diabetes. Diabetes Care. 2006, 29: 1826-1832. 10.2337/dc06-0254.

Singer GM, Geohas J: The effect of chromium picolinate and biotin supplementation on glycemic control in poorly controlled patients with type 2 diabetes mellitus: a placebo-controlled, double-blinded, randomized trial. Diabetes Technol Ther. 2006, 8: 636-643. 10.1089/dia.2006.8.636.

Lai MH: Antioxidant effects and insulin resistance improvement of chromium combined with vitamin C and E supplementation for type 2 diabetes mellitus. J Clin Biochem Nutr. 2008, 43: 191-198. 10.3164/jcbn.2008064.

Althuis MD, Jordan NE, Ludington EA, Wittes JT: Glucose and insulin responses to dietary chromium supplements: a meta-analysis. Am J Clin Nutr. 2002, 76: 148-155.

Balk EM, Tatsioni A, Lichtenstein AH, Lau J, Pittas AG: Effect of chromium supplementation on glucose metabolism and lipids: a systematic review of randomized controlled trials. Diabetes Care. 2007, 30: 2154-163. 10.2337/dc06-0996.

Broadhurst CL, Domenico P: Clinical studies on chromium picolinate supplementation in diabetes mellitus--a review. Diabetes Technol Ther. 2006, 8: 677-687. 10.1089/dia.2006.8.677.

Wang ZQ, Qin J, Martin J, Zhang XH, Sereda O, Anderson RA, et al: Phenotype of subjects with type 2 diabetes mellitus may determine clinical response to chromium supplementation. Metabolism. 2007, 56: 1652-1655. 10.1016/j.metabol.2007.07.007.

Wang ZQ, Cefalu WT: Current concepts about chromium supplementation in type 2 diabetes and insulin resistance. Curr Diab Rep. 2010, 10: 145-151. 10.1007/s11892-010-0097-3.

Vladeva SV, Terzieva DD, Arabadjiiska DT: Effect of chromium on the insulin resistance in patients with type II diabetes mellitus. Folia Med. 2005, 47: 59-62.

Lydic ML, McNurlan M, Bembo S, Mitchell L, Komaroff E, Gelato M: Chromium picolinate improves insulin sensitivity in obese subjects with polycystic ovary syndrome. Fertil Steril. 2005, 86: 243-246. 10.1016/j.fertnstert.2005.11.069.

Iqbal N, Cardillo S, Volger S, Bloedon LT, Anderson RA, Boston R, et al: Chromium picolinate does not improve key features of metabolic syndrome in obese nondiabetic adults. Metab Syndr Relat Disord. 2009, 7: 143-150. 10.1089/met.2008.0048.

Haase H, Overbeck S, Rink L: Zinc supplementation for the treatment or prevention of disease: current status and future perspectives. Exp Gerontol. 2008, 43: 394-408. 10.1016/j.exger.2007.12.002.

Faure P, Lafond JL, Coudray C, Rossini E, Halimi S, Favier A, et al: Zinc prevents the structural and functional properties of free radical treated-insulin. Biochim Biophys Acta. 1994, 1209: 260-264. 10.1016/0167-4838(94)90194-5.

Saper RB, Rash R: Zinc: an essential micronutrient. Am Fam Physician. 2009, 79: 768-772.

Walsh CT, Sandstead HH, Prasad AS, Newberne PM, Fraker PJ: Zinc: health effects and research priorities for the 1990s. Environ Health Perspect. 1994, 102 (Suppl 2): 5-46. 10.2307/3431820.

Maret W, Sandstead HH: Zinc requirements and the risks and benefits of zinc supplementation. J Trace Elem Med Biol. 2006, 20: 3-18. 10.1016/j.jtemb.2006.01.006.

Lowe NM, Fekete K, Decsi T: Methods of assessment of zinc status in humans: a systematic review. Am J Clin Nutr. 2009, 89: 2040S-2051S. 10.3945/ajcn.2009.27230G.

Sekler I, Sensi SL, Hershfinkel M, Silverman WF: Mechanism and regulation of cellular zinc transport. Mol Med. 2007, 13: 337-343. 10.2119/2007-00037.Sekler.

Liuzzi JP, Cousins RJ: Mammalian zinc transporters. Annu Rev Nutr. 2004, 24: 151-172. 10.1146/annurev.nutr.24.012003.132402.

Lichten LA, Cousins RJ: Mammalian zinc transporters: nutritional and physiologic regulation. Annu Rev Nutr. 2009, 29: 153-176. 10.1146/annurev-nutr-033009-083312.

Devirgiliis C, Zalewski PD, Perozzi G, Murgia C: Zinc fluxes and zinc transporter genes in chronic diseases. Mutat Res. 2007, 62: 84-93.

Rungby J: Zinc, zinc transporters and diabetes. Diabetologia. 2010, 53: 1549-51. 10.1007/s00125-010-1793-x.

Wijesekara N, Chimienti F, Wheeler MB: Zinc, a regulator of islet function and glucose homeostasis. Diabetes Obes Metab. 2009, 11 (Suppl 4): 202-214. 10.1111/j.1463-1326.2009.01110.x.

Prasad AS: Clinical, immunological, anti-inflammatory and antioxidant roles of zinc. Exp Gerontol. 2008, 43: 370-377. 10.1016/j.exger.2007.10.013.

Wiernsperger NF: Oxidative stress as a therapeutic target in diabetes: revisiting the controversy. Diabetes Metab. 2003, 29: 579-585. 10.1016/S1262-3636(07)70072-1.

Afridi HI, Kazi TG, Kazi N, Baig JA, Jamali MK, Arain MB, et al: Status of essential trace metals in biological samples of diabetic mother and their neonates. Arch Gynecol Obstet. 2009, 280: 415-423. 10.1007/s00404-009-0955-x.

Singh RB, Niaz MA, Rastogi SS, Bajaj S, Gaoli Z, Shoumin Z: Current zinc intake and risk of diabetes and coronary artery disease and factors associated with insulin resistance in rural and urban populations of North India. J Am Coll Nutr. 1998, 17: 564-570.

Viktorinova A, Toserova E, Krizko M, Durackova Z: Altered metabolism of copper, zinc, and magnesium is associated with increased levels of glycated hemoglobin in patients with diabetes mellitus. Metabolism. 2009, 58: 1477-1482. 10.1016/j.metabol.2009.04.035.

Serdar MA, Bakir F, Hasimi A, Celik T, Akin O, Kenar L, et al: Trace and toxic element patterns in nonsmoker patients with noninsulin-dependent diabetes mellitus, impaired glucose tolerance, and fasting glucose. Int J Diabetes Dev Ctries. 2009, 29: 35-40. 10.4103/0973-3930.50713.

Zargar AH, Shah NA, Masoodi SR, Laway BA, Dar FA, Khan AR, et al: Copper, zinc, and magnesium levels in non-insulin dependent diabetes mellitus. Postgrad Med J. 1998, 74: 665-668. 10.1136/pgmj.74.877.665.

Chausmer AB: Zinc, insulin and diabetes. J Am Coll Nutr. 1998, 17: 109-115.

Suliburska J, Bogdanski P, Pupek-Musialik D, Krejpcio Z: Dietary intake and serum and hair concentrations of minerals and their relationship with serum lipids and glucose levels in hypertensive and obese patients with insulin resistance. Biol Trace Elem Res.

Obeid O, Elfakhani M, Hlais S, Iskandar M, Batal M, Mouneimne Y, et al: Plasma copper, zinc, and selenium levels and correlates with metabolic syndrome components of lebanese adults. Biol Trace Elem Res. 2008, 123: 58-65. 10.1007/s12011-008-8112-0.

Aguilar MV, Saavedra P, Arrieta FJ, Mateos CJ, Gonzalez MJ, Meseguer I, et al: Plasma mineral content in type-2 diabetic patients and their association with the metabolic syndrome. Ann Nutr Metab. 2007, 51: 402-406. 10.1159/000108108.

Soinio M, Marniemi J, Laakso M, Pyorala K, Lehto S, Ronnemaa T: Serum zinc level and coronary heart disease events in patients with type 2 diabetes. Diabetes Care. 2007, 30: 523-528. 10.2337/dc06-1682.

Ilouz R, Kaidanovich O, Gurwitz D, Eldar-Finkelman H: Inhibition of glycogen synthase kinase-3beta by bivalent zinc ions: insight into the insulin-mimetic action of zinc. Biochem Biophys Res Commun. 2002, 295: 102-106. 10.1016/S0006-291X(02)00636-8.

Jansen J, Karges W, Rink L: Zinc and diabetes--clinical links and molecular mechanisms. J Nutr Biochem. 2009, 20: 399-417. 10.1016/j.jnutbio.2009.01.009.

Prasad AS, Bao B, Beck FW, Kucuk O, Sarkar FH: Antioxidant effect of zinc in humans. Free Radic Biol Med. 2004, 37: 1182-1190. 10.1016/j.freeradbiomed.2004.07.007.

Mocchegiani E, Giacconi R, Malavolta M: Zinc signalling and subcellular distribution: emerging targets in type 2 diabetes. Trends Mol Med. 2008, 14: 419-428. 10.1016/j.molmed.2008.08.002.

Bettger WJ: Zinc and selenium, site-specific versus general antioxidation. Can J Physiol Pharmacol. 1993, 71: 721-724.

Foster M, Samman S: Zinc and redox signaling: perturbations associated with cardiovascular disease and diabetes mellitus. Antioxid Redox Signal. 2010, 13: 1549-1573. 10.1089/ars.2010.3111.

Maret W: The function of zinc metallothionein: a link between cellular zinc and redox state. J Nutr. 2000, 130 (5S Suppl): 1455S-8S.

Tupe RS, Tupe SG, Tarwadi KV, Agte VV: Effect of different dietary zinc levels on hepatic antioxidant and micronutrients indices under oxidative stress conditions. Metabolism. 2010, 59: 1603-1611. 10.1016/j.metabol.2010.02.020.

Matsui H, Oyama TM, Okano Y, Hashimoto E, Kawanai T, Oyama Y: Low micromolar zinc exerts cytotoxic action under H[2]O[2]-induced oxidative stress: Excessive increase in intracellular Zn[2+] concentration. Toxicology. 2010, 276: 27-32. 10.1016/j.tox.2010.06.011.

Steinhubl SR: Why have antioxidants failed in clinical trials?. Am J Cardiol. 2008, 101: 14D-19D. 10.1016/j.amjcard.2008.02.003.

Wiernsperger NF: Oxidative stress: the special case of diabetes. Biofactors. 2003, 19: 11-18. 10.1002/biof.5520190103.

Padmavathi IJ, Kishore YD, Venu L, Ganeshan M, Harishankar N, Giridharan NV, et al: Prenatal and perinatal zinc restriction: effects on body composition, glucose tolerance and insulin response in rat offspring. Exp Physiol. 2009, 94: 761-769. 10.1113/expphysiol.2008.045856.

Simon SF, Taylor CG: Dietary zinc supplementation attenuates hyperglycemia in db/db mice. Exp Biol Med. 2001, 226yang: 43-51.

Tang Y, Yang Q, Lu J, Zhang X, Suen D, Tan Y, et al: Zinc supplementation partially prevents renal pathological changes in diabetic rats. J Nutr Biochem. 2010, 21: 237-246. 10.1016/j.jnutbio.2008.12.010.

Bruno RS, Song Y, Leonard SW, Mustacich DJ, Taylor AW, Traber MG, et al: Dietary zinc restriction in rats alters antioxidant status and increases plasma F2 isoprostanes. J Nutr Biochem. 2007, 18: 509-518. 10.1016/j.jnutbio.2006.09.001.

Taneja SK, Mandal R, Girhotra S: Long term excessive Zn-supplementation promotes metabolic syndrome-X in Wistar rats fed sucrose and fat rich semisynthetic diet. Indian J Exp Biol. 2006, 44: 705-718.

Taneja SK, Mandal R: Modulation of Zn-induced hyperinsulinemia/insulin resistance in Wistar rat fed modified poultry egg. Biofactors. 2009, 35: 389-398. 10.1002/biof.51.

Sun Q, van Dam RM, Willett WC, Hu FB: Prospective study of zinc intake and risk of type 2 diabetes in women. Diabetes Care. 2009, 32: 629-634. 10.2337/dc08-1913.

Raz I, Karsai D, Katz M: The influence of zinc supplementation on glucose homeostasis in NIDDM. Diabetes Res. 1989, 11: 73-79.

Heidarian E, Amini M, Parham M, Aminorroaya A: Effect of zinc supplementation on serum homocysteine in type 2 diabetic patients with microalbuminuria. Rev Diabet Stud. 2009, 6: 64-70. 10.1900/RDS.2009.6.64.

Marreiro DN, Geloneze B, Tambascia MA, Lerario AC, Halpern A, Cozzolino SM: Effect of zinc supplementation on serum leptin levels and insulin resistance of obese women. Biol Trace Elem Res. 2006, 112: 109-118. 10.1385/BTER:112:2:109.

Beletate V, El Dib RP, Atallah AN: Zinc supplementation for the prevention of type 2 diabetes mellitus. Cochrane Database Syst Rev. 2007, CD005525-

Mariani E, Mangialasche F, Feliziani FT, Cecchetti R, Malavolta M, Bastiani P, et al: Effects of zinc supplementation on antioxidant enzyme activities in healthy old subjects. Exp Gerontol. 2008, 43: 445-451. 10.1016/j.exger.2007.10.012.

Russell ST, Tisdale MJ: Antidiabetic properties of zinc-alpha2-glycoprotein in ob/ob mice. Endocrinology. 2010, 151: 948-957. 10.1210/en.2009-0827.

Selva DM, Lecube A, Hernandez C, Baena JA, Fort JM, Simo R: Lower zinc-alpha2-glycoprotein production by adipose tissue and liver in obese patients unrelated to insulin resistance. J Clin Endocrinol Metab. 2009, 94: 4499-4507. 10.1210/jc.2009-0758.

Adachi Y, Yoshida J, Kodera Y, Kiss T, Jakusch T, Enyedy EA, et al: Oral administration of a zinc complex improves type 2 diabetes and metabolic syndromes. Biochem Biophys Res Commun. 2006, 351: 165-170. 10.1016/j.bbrc.2006.10.014.

Yoshikawa Y, Adachi Y, Sakurai H: A new type of orally active anti-diabetic Zn[II]-dithiocarbamate complex. Life Sci. 2007, 80: 759-766. 10.1016/j.lfs.2006.11.003.

Navarro-Alarcon M, Cabrera-Vique C: Selenium in food and the human body: a review. Sci Total Environ. 2008, 400: 115-141. 10.1016/j.scitotenv.2008.06.024.

Steinbrenner H, Sies H: Protection against reactive oxygen species by selenoproteins. Biochim Biophys Acta. 2009, 1790: 1478-85.

Lu J, Holmgren A: Selenoproteins. J Biol Chem. 2009, 284: 723-727. 10.1074/jbc.R800045200.

Burk RF, Hill KE, Motley AK: Selenoprotein metabolism and function: evidence for more than one function for selenoprotein P. J Nutr. 2003, 133 (5 Suppl 1): 1517S-20S.

Holben DH, Smith AM: The diverse role of selenium within selenoproteins: a review. J Am Diet Assoc. 1999, 99: 836-843. 10.1016/S0002-8223(99)00198-4.

Ozkaya M, Sahin M, Cakal E, Gisi K, Bilge F, Kilinc M: Selenium levels in first-degree relatives of diabetic patients. Biol Trace Elem Res. 2009, 128: 144-151. 10.1007/s12011-008-8263-z.

Yang Z, Xie Y, Chen J, Zhang D, Yang C, Li M: High selenium may be a risk factor of adolescent idiopathic scoliosis. Med Hypotheses. 2010, 75: 126-127. 10.1016/j.mehy.2010.02.006.

Vinceti M, Maraldi T, Bergomi M, Malagoli C: Risk of chronic low-dose selenium overexposure in humans: insights from epidemiology and biochemistry. Rev Environ Health. 2009, 24: 231-248.

Neve J: Selenium as a 'nutraceutical': how to conciliate physiological and supra-nutritional effects for an essential trace element. Curr Opin Clin Nutr Metab Care. 2002, 5: 659-663. 10.1097/00075197-200211000-00008.

Battin EE, Brumaghim JL: Antioxidant activity of sulfur and selenium: a review of reactive oxygen species scavenging, glutathione peroxidase, and metal-binding antioxidant mechanisms. Cell Biochem Biophys. 2009, 55: 1-23. 10.1007/s12013-009-9054-7.

Tapiero H, Townsend DM, Tew KD: The antioxidant role of selenium and seleno-compounds. Biomed Pharmacother. 2003, 57: 134-144. 10.1016/S0753-3322(03)00035-0.

Zheng HT, Zhou LN, Huang CJ, Hua X, Jian R, Su BH, et al: Selenium inhibits high glucose- and high insulin-induced adhesion molecule expression in vascular endothelial cells. Arch Med Res. 2008, 39: 373-379. 10.1016/j.arcmed.2007.12.007.

Duntas LH: Selenium and inflammation: underlying anti-inflammatory mechanisms. Horm Metab Res. 2009, 41: 443-447. 10.1055/s-0029-1220724.

Can B, Ulusu NN, Kilinc K, Leyla Acan N, Saran Y, Turan B: Selenium treatment protects diabetes-induced biochemical and ultrastructural alterations in liver tissue. Biol Trace Elem Res. 2005, 105: 135-150. 10.1385/BTER:105:1-3:135.

Erbayraktar Z, Yilmaz O, Artmann AT, Cehreli R, Coker C: Effects of selenium supplementation on antioxidant defense and glucose homeostasis in experimental diabetes mellitus. Biol Trace Elem Res. 2007, 118: 217-226. 10.1007/s12011-007-0037-5.

Schrauzer GN: Nutritional selenium supplements: product types, quality, and safety. J Am Coll Nutr. 2001, 20: 1-4.

Mueller AS, Pallauf J: Compendium of the antidiabetic effects of supranutritional selenate doses. In vivo and in vitro investigations with type II diabetic db/db mice. J Nutr Biochem. 2006, 17: 548-560. 10.1016/j.jnutbio.2005.10.006.

Zulet MA, Puchau B, Hermsdorff HH, Navarro C, Martinez JA: Dietary selenium intake is negatively associated with serum sialic acid and metabolic syndrome features in healthy young adults. Nutr Res. 2009, 29: 41-48. 10.1016/j.nutres.2008.11.003.

Puchau B, Zulet MA, Gonzalez de Echavarri A, Navarro-Blasco I, Martinez JA: Selenium intake reduces serum C3, an early marker of metabolic syndrome manifestations, in healthy young adults. Eur J Clin Nutr. 2009, 63: 858-864. 10.1038/ejcn.2008.48.

Stranges S, Marshall JR, Natarajan R, Donahue RP, Trevisan M, Combs GF, et al: Effects of long-term selenium supplementation on the incidence of type 2 diabetes: a randomized trial. Ann Intern Med. 2007, 147: 217-223.

Bleys J, Navas-Acien A, Guallar E: Serum selenium and diabetes in U.S. adults. Diabetes Care. 2007, 30: 829-834. 10.2337/dc06-1726.

Laclaustra M, Navas-Acien A, Stranges S, Ordovas JM, Guallar E: Serum selenium concentrations and hypertension in the US Population. Circ Cardiovasc Qual Outcomes. 2009, 2: :369-376. 10.1161/CIRCOUTCOMES.108.831552.

Muecke R, Schomburg L, Buentzel J, Kisters K, Micke O: Selenium or no selenium--that is the question in tumor patients: a new controversy. Integr Cancer Ther. 2010, 9: 136-141. 10.1177/1534735410367648.

Thompson KH, Orvig C: Vanadium in diabetes: 100 years from Phase 0 to Phase I. J Inorg Biochem. 2006, 100: 1925-1935. 10.1016/j.jinorgbio.2006.08.016.

Srivastava AK: Anti-diabetic and toxic effects of vanadium compounds. Mol Cell Biochem. 2000, 206: 177-182. 10.1023/A:1007075204494.

Domingo JL: Vanadium and tungsten derivatives as antidiabetic agents: a review of their toxic effects. Biol Trace Elem Res. 2002, 88: 97-112. 10.1385/BTER:88:2:097.

Zhao Y, Ye L, Liu H, Xia Q, Zhang Y, Yang X, et al: Vanadium compounds induced mitochondria permeability transition pore [PTP] opening related to oxidative stress. J Inorg Biochem. 2010, 104: 371-378. 10.1016/j.jinorgbio.2009.11.007.

Assem FL, Levy LS: A review of current toxicological concerns on vanadium pentoxide and other vanadium compounds: gaps in knowledge and directions for future research. J Toxicol Environ Health B Crit Rev. 2009, 12: 289-306.

Mehdi MZ, Pandey SK, Theberge JF, Srivastava AK: Insulin signal mimicry as a mechanism for the insulin-like effects of vanadium. Cell Biochem Biophys. 2006, 44: 73-81. 10.1385/CBB:44:1:073.

Vardatsikos G, Mehdi MZ, Srivastava AK: Bis[maltolato]-oxovanadium [IV]-induced phosphorylation of PKB, GSK-3 and FOXO1 contributes to its glucoregulatory responses. Int J Mol Med. 2009, 24: 303-309.

Gil J, Miralpeix M, Carreras J, Bartrons R: Insulin-like effects of vanadate on glucokinase activity and fructose 2,6-bisphosphate levels in the liver of diabetic rats. J Biol Chem. 1988, 263: 1868-1871.

Shafrir E, Spielman S, Nachliel I, Khamaisi M, Bar-On H, Ziv E: Treatment of diabetes with vanadium salts: general overview and amelioration of nutritionally induced diabetes in the Psammomys obesus gerbil. Diabetes Metab Res Rev. 2001, 17: 55-66. 10.1002/1520-7560(2000)9999:9999<::AID-DMRR165>3.0.CO;2-J.

Halberstam M, Cohen N, Shlimovich P, Rossetti L, Shamoon H: Oral vanadyl sulfate improves insulin sensitivity in NIDDM but not in obese nondiabetic subjects. Diabetes. 1996, 45: 659-666. 10.2337/diabetes.45.5.659.

Jacques-Camarena O, Gonzalez-Ortiz M, Martinez-Abundis E, Lopez-Madrueno JF, Medina-Santillan R: Effect of vanadium on insulin sensitivity in patients with impaired glucose tolerance. Ann Nutr Metab. 2008, 53: 195-198. 10.1159/000175844.

Poucheret P, Verma S, Grynpas MD, McNeill JH: Vanadium and diabetes. Mol Cell Biochem. 1998, 188: 73-80. 10.1023/A:1006820522587.

Garcia-Vicente S, Yraola F, Marti L, Gonzalez-Munoz E, Garcia-Barrado MJ, Canto C, et al: Oral insulin-mimetic compounds that act independently of insulin. Diabetes. 2007, 56: 486-493. 10.2337/db06-0269.

Zorzano A, Palacin M, Marti L, Garcia-Vicente S: Arylalkylamine vanadium salts as new anti-diabetic compounds. J Inorg Biochem. 2009, 103: 559-566. 10.1016/j.jinorgbio.2009.01.015.

Smith DM, Pickering RM, Lewith GT: A systematic review of vanadium oral supplements for glycaemic control in type 2 diabetes mellitus. QJM. 2008, 101: 351-358. 10.1093/qjmed/hcn003.

Boden G, Chen X, Ruiz J, van Rossum GD, Turco S: Effects of vanadyl sulfate on carbohydrate and lipid metabolism in patients with non-insulin-dependent diabetes mellitus. Metabolism. 1996, 45: 1130-1135. 10.1016/S0026-0495(96)90013-X.

Cohen N, Halberstam M, Shlimovich P, Chang CJ, Shamoon H, Rossetti L: Oral vanadyl sulfate improves hepatic and peripheral insulin sensitivity in patients with non-insulin-dependent diabetes mellitus. J Clin Invest. 1995, 95: 2501-2509. 10.1172/JCI117951.

Goldfine AB, Patti ME, Zuberi L, Goldstein BJ, LeBlanc R, Landaker EJ, et al: Metabolic effects of vanadyl sulfate in humans with non-insulin-dependent diabetes mellitus: in vivo and in vitro studies. Metabolism. 2000, 49: 400-410. 10.1016/S0026-0495(00)90418-9.

Cusi K, Cukier S, DeFronzo RA, Torres M, Puchulu FM, Redondo JC: Vanadyl sulfate improves hepatic and muscle insulin sensitivity in type 2 diabetes. J Clin Endocrinol Metab. 2001, 86: 1410-1417. 10.1210/jc.86.3.1410.

Thompson KH, Lichter J, LeBel C, Scaife MC, McNeill JH, Orvig C: Vanadium treatment of type 2 diabetes: a view to the future. J Inorg Biochem. 2009, 103: 554-558. 10.1016/j.jinorgbio.2008.12.003.

Freeman MP, Freeman SA: Lithium: clinical considerations in internal medicine. Am J Med. 2006, 119: 478-481. 10.1016/j.amjmed.2005.11.003.

Livingstone C, Rampes H: Lithium: a review of its metabolic adverse effects. J Psychopharmacol. 2006, 20: 347-355. 10.1177/0269881105057515.

Jope RS: Lithium and GSK-3: one inhibitor, two inhibitory actions, multiple outcomes. Trends Pharmacol Sci. 2003, 24: 441-443. 10.1016/S0165-6147(03)00206-2.

O'Brien WT, Klein PS: Validating GSK3 as an in vivo target of lithium action. Biochem Soc Trans. 2009, 37 (Pt 5): 1133-1138.

Henriksen EJ, Kinnick TR, Teachey MK, O'Keefe MP, Ring D, Johnson KW, et al: Modulation of muscle insulin resistance by selective inhibition of GSK-3 in Zucker diabetic fatty rats. Am J Physiol Endocrinol Metab. 2003, 284: E892-E900.

Kaidanovich O, Eldar-Finkelman H: The role of glycogen synthase kinase-3 in insulin resistance and type 2 diabetes. Expert Opin Ther Targets. 2002, 6: 555-561. 10.1517/14728222.6.5.555.

Hers HG: The control of glycogen metabolism in the liver. Annu Rev Biochem. 1976, 45: 167-189. 10.1146/annurev.bi.45.070176.001123.

Gould TD, Zarate CA, Manji HK: Glycogen synthase kinase-3: a target for novel bipolar disorder treatments. J Clin Psychiatry. 2004, 65: 10-21. 10.4088/JCP.v65n0103.

Fiedorowicz JG, Palagummi NM, Forman-Hoffman VL, Miller DD, Haynes WG: Elevated prevalence of obesity, metabolic syndrome, and cardiovascular risk factors in bipolar disorder. Ann Clin Psychiatry. 2008, 20: 131-137.

Sicras A, Rejas J, Navarro R, Serrat J, Blanca M: Metabolic syndrome in bipolar disorder: a cross-sectional assessment of a Health Management Organization database. Bipolar Disord. 2008, 10: 607-616. 10.1111/j.1399-5618.2008.00599.x.

Okosieme OE, Campbell A, Patton K, Evans ML: Transient diabetes associated with withdrawal of lithium therapy. Diabetes Care. 2006, 29: 1181-10.2337/dc06-0291.

Macko AR, Beneze AN, Teachey MK, Henriksen EJ: Roles of insulin signalling and p38 MAPK in the activation by lithium of glucose transport in insulin-resistant rat skeletal muscle. Arch Physiol Biochem. 2008, 114: 331-339. 10.1080/13813450802536067.

Harrell NB, Teachey MK, Gifford NJ, Henriksen EJ: Essential role of p38 MAPK for activation of skeletal muscle glucose transport by lithium. Arch Physiol Biochem. 2007, 113: 221-227. 10.1080/13813450701783158.

Hermida OG, Fontela T, Ghiglione M, Uttenthal LO: Effect of lithium on plasma glucose, insulin and glucagon in normal and streptozotocin-diabetic rats: role of glucagon in the hyperglycaemic response. Br J Pharmacol. 1994, 111: 861-865.

Rodriguez-Gil JE, Fernandez-Novell JM, Barbera A, Guinovart JJ: Lithium's effects on rat liver glucose metabolism in vivo. Arch Biochem Biophys. 2000, 375: 377-384. 10.1006/abbi.1999.1679.

Bartlett HE, Eperjesi F: Nutritional supplementation for type 2 diabetes: a systematic review. Ophthalmic Physiol Opt. 2008, 28: 503-523. 10.1111/j.1475-1313.2008.00595.x.

Chang Y, Zhang GZ, Piao SL, Gao S, Zheng DM, Song Y, et al: Protective effects of combined micronutrients on islet beta-cells of streptozotocin-induced diabetic mice. Int J Vitam Nutr Res. 2009, 79: 104-116. 10.1024/0300-9831.79.2.104.

Faure P, Barclay D, Joyeux-Faure M, Halimi S: Comparison of the effects of zinc alone and zinc associated with selenium and vitamin E on insulin sensitivity and oxidative stress in high-fructose-fed rats. J Trace Elem Med Biol. 2007, 21: 113-119. 10.1016/j.jtemb.2006.12.005.

Padmavathi IJ, Rao KR, Venu L, Ganeshan M, Kumar KA, Rao Ch N, et al: Chronic maternal dietary chromium restriction modulates visceral adiposity: probable underlying mechanisms. Diabetes. 2010, 59: 98-104. 10.2337/db09-0779.

Padmavathi IJ, Rao KR, Venu L, Ismail A, Raghunath M: Maternal dietary chromium restriction programs muscle development and function in the rat offspring. Exp Biol Med. 2010, 235: 349-355. 10.1258/ebm.2009.009199.

Venu L, Harishankar N, Krishna TP, Raghunath M: Does maternal dietary mineral restriction per se predispose the offspring to insulin resistance?. Eur J Endocrinol. 2004, 151: 287-294. 10.1530/eje.0.1510287.

 

靶向基因·营养基因组

400-800-3539